想要补习的朋友想必都知道,如今的英语培训教学模式主要分为线上补习和线下补习两种。经过我的仔细对比和研究,我觉得线上补习一对一的这种教学模式更值得大家选择,这种教学模式的好处就在于随时随地都能学习,方便快捷,能自主规划学习时间;补习一对一辅导,能够塑造良好的学习环境;而且针对性强,可以针对薄弱环境进行针对性辅导,效果看得见。

而目前口碑最好,性价比最高的线上补习机构当属 “梯方在线” 了。梯方在线是由复旦大学校友联合创办的在线补习机构,以超高的性价比和良好的口碑,颇受大家的喜爱,在网上的名气也是很大。最关键的是他们那的价格收费平均一节课才 20 块钱左右,可以天天上课,高频学习,真正做到了天天在家留学,记忆更深刻,适合长期报名学习,扎实提高学习水平!。

当初我也报的梯方在线,现在学的蛮不错的,这里分享一节梯方在线价值 396 元的免费试听课程:【http://school.tifangedu.com/

1、花同样的钱在梯方在线可以每天都上一节课,在别的机构一周一节课,而且老师不好约, 孩子学了容易忘,梯方在线每天都可以学习,效果更好。

2、梯方在线下属梯方在线、梯方读书会、X-school 青少年领袖素质情商学院以及家庭教育工作坊四大事业部,凭借其过硬的师资团队及严谨的治学态度,在过去六年的时间内,已累计培训学员近 80000 人次,学员在中高考、自主招生、小升初,及各类竞赛中取得了优异的成绩。

3、孩子在别的机构学了一年多,效果到底怎样也不知道,梯方在线小班时时互动,师生沟通 0 距离,上课过程全纪录,重点难点反复看.7x24 小时答题疑惑,考点时时解决!分层小班教学,真正做到因材施教!

少儿补习:http://school.tifangedu.com/shaoer【中小学补习班】

青少年补习:http://school.tifangedu.com/gaozhong【高中补习班】

沪教多年骨干教师,专研上海考试政策;无缝对接培优班课,清晰规划学习生涯;实时回看高效复习,父母实时旁听看课;量身定制学习方案,打造智慧高效课堂

小学奥数最常见的12个模块知识详解,附公式及例题哦!

上海家长 2020-05-21 PM 7℃ 0条
梯方在线教育

今天,我们分享小学阶段的十几种数学题型归类总结,家长快快为孩子收藏,一起学习吧!
题型一:归一问题
【含义**在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
【数量关系】
总量÷份数=单一量
单一量×所占份数=所求几份的数量
或 总量A÷(总量B÷份数B)=份数A
【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。
【例】买5支铅笔需要0.6元钱,买同样的铅笔16支,需要多少钱?
解:先求出一支铅笔多少钱——0.6÷5=0.12(元)
再求买16支铅笔需要多少钱——0.12×16=1.92(元)
综合算式:0.6÷5×16=0.12×16=1.92(元)
题型二:归总问题
【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。
【数量关系】
1份数量×份数=总量
总量÷一份数量=份数
【解题思路】先求出总数量,再解决问题。
【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。问原来做791套衣服的布,现在可以做多少套衣服?
解:先求这批布总共多少米——3.2×791=2531.2(米)
再求现在可以做多少套——2531.2÷2.8=904(套)
综合算式:3.2×791÷2.8=904(套)
题型三:和差问题
【含义】已知两个数量的和与差,求这两个数量各是多少。
【数量关系】
大数=(和+差)÷2
小数=(和-差)÷2
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解:直接套用公式——
甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
题型四:和倍问题
【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。
【数量关系】
总和÷(倍数+1)=较小数
总和-较小数=较大数
或 较小数×倍数=较大数
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】果园里有杏树和桃树共248棵,桃树是杏树的3倍,求杏树和桃树各有多少棵?
解:先求杏树有多少棵——248÷(3+1)=62(棵)
再求桃树有多少棵——62×3=186(棵)
题型五:差倍问题
【含义】已知两个数的差及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。
【数量关系】
两个数的差÷(倍数-1)=较小数
较小数×倍数=较大数
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】果园里桃树的棵数是杏树的3倍,而且桃树比杏树度124棵,求杏树和桃树各有多少棵?
解:先求杏树有多少棵——124÷(3-1)=62(棵)
再求桃树有多少棵——62×3=186(棵)
题型六:倍比问题
【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出倍数,再用倍比方法算出要求的数。
【数量关系】
总量A÷数量A=倍数
数量B×倍数=总量B
【解题思路】先求出倍数,再利用倍比关系求解。
【例】100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解:先求倍数,3700千克是100千克的多少倍——3700÷100=37(倍)
再求可以榨油多少千克——40×37=1480(千克)
综合算式:40×(3700÷100)=1480(千克)
题型七:相遇问题
含义】**两个运动的物体同时由两地出发相向而行,在途中相遇的问题。
【数量关系】
相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,问经过几小时两船相遇?
解:直接套用公式392÷(28+21)=8(小时)
题型八:追及问题
【含义】两个运动物体在不同地点同时出发(或者 在同一地点不同时出发,或者在不同地点不同时出发)作相向运动。在后面的行进速度快,在前面的行进速度慢,在一定时间内,后者追上了前者的问题。
【数量关系】
追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解:先求劣马先走了多少千米——75×12=900(千米)
再求好马几天能追上——900÷(120-75)=20(天)
综合算式:75×12÷(120-75)=900÷45=20(天)
题型九:植树问题
【含义】按相等的距离,在距离、棵距、棵数这三个量之间,已知其中两个量,求第三个量的问题。
【数量关系】
线性植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距
方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3
面积植树 棵数=面积÷(棵距×行距)
【解题思路】先弄清是哪种植树问题,再套用公式。
【例】一条河堤136米,每隔2米栽一棵柳树,头尾都栽,一共要栽多少棵柳树?
解:直接套用“线性植树”公式——
136÷2+1=68+1=69(棵)
题型十:年龄问题
【含义】已知一个人的年龄,根据已知条件求另一个人的年龄。
【数量关系】两人年龄差不变。**
【解题思路】抓住“年龄差不变”的特点,转化为和差倍比问题求解。
【例】爸爸今年37岁,亮亮今年7岁,几年后爸爸年龄是亮亮的4倍?
解:抓特点,先求年龄差——37-7=30(岁)
转化为和差倍比问题——30÷(4-1)-7=3(年)
综合算式:(37-7)÷(4-1)-7=3(年)
题型十一:行船问题
【含义】关于船速、水速、逆水、顺水的航行问题。船速即船只在静水中航行的速度,水速指水流速度,船只顺水航行是船速与水速之和,船只逆水航行是船速与水速只差。
【数量关系】
(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速度=船速×2-逆水速度=逆水速度+水速×2
逆水速度=船速×2-顺水速度=顺水速度-水速×2
【解题思路】**直接套用公式即可。
【例】一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水航行这段路程需用几小时?
解:直接套用公式——船速为320÷8-15=25(千米/小时)
船在逆水中的速度为25-15=10(千米/小时)
船逆水航行这段路程的时间为320÷10=32(小时)
题型十二:火车过桥问题
【含义】这是与列车行驶有关的问题,解答时注意列车车身的长度。
【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速**
【解题思路】利用数量关系及其变式求解。
【例】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?
解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
先求火车三分钟行多少米——900×3=2700(米)
再求火车长度——2700-2400=300(米)
综合算式:900×3-2400=300(米)
寒假在家也能提前预习啦,小学语数英教材配套视频课程,点击阅读原文学习!

标签: 小学数学

本文内容综合来源网络,本网编辑,如有侵权,请及时联系删除。